Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine X ; 14: 100347, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519774

RESUMO

Toxoplasmosis is a zoonotic disease caused by the protozoan parasite, Toxoplasma gondii known to infect almost all animals, including birds and humans globally. This disease has impacted the livestock industry and public health, where infection of domestic animals increases the zoonotic risk of transmission of infection to humans, threatening public health. Hence the need to discover novel and safe vaccines to fight against toxoplasmosis. In the current study, a novel multiepitope vaccine was designed using immunoinformatics techniques targeting T. gondii AMA1, GRA7 and ROP16 antigens, consisting of antigenic, immunogenic, non-allergenic and cytokine inducing T-cell (9 CD8+ and 15 CD4+) epitopes and four (4) B-cell epitopes fused together using AAY, KK and GPGPG linkers. The tertiary model of the proposed vaccine was predicted and validated to confirm the structural quality of the vaccine. The designed vaccine was highly antigenic (antigenicity = 0.6645), immunogenic (score = 2.89998), with molecular weight of 73.35 kDa, instability and aliphatic index of 28.70 and 64.10, respectively; and GRAVY of -0.363. The binding interaction, stability and flexibility were assessed with molecular docking and dynamics simulation, which revealed the proposed vaccine to have good structural interaction (binding affinity = -106.882 kcal/mol) and stability when docked with Toll like receptor-4 (TLR4). The results revealed that the Profilin-adjuvanted vaccine is promising, as it predicted induction of enhanced immune responses through the production of cytokines and antibodies critical in blocking host invasion.

2.
Infect Genet Evol ; 92: 104875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905890

RESUMO

Plasmodium falciparum (P. falciparum) is a leading causative agent of malaria, an infectious disease that can be fatal. Unfortunately, control measures are becoming less effective over time. A vaccine is needed to effectively control malaria and lead towards the total elimination of the disease. There have been multiple attempts to develop a vaccine, but to date, none have been certified as appropriate for wide-scale use. In this study, an immunoinformatics method is presented to design a multi-epitope vaccine construct predicted to be effective against P. falciparum malaria. This was done through the prediction of 12 CD4+ T-cell, 10 CD8+ T-cell epitopes and, 1 B-cell epitope which were assessed for predicted high antigenicity, immunogenicity, and non-allergenicity through in silico methods. The Human Leukocyte Antigen (HLA) population coverage showed that the alleles associated with the epitopes accounted for 78.48% of the global population. The CD4+ and CD8+ T-cell epitopes were docked to HLA-DRB1*07:01 and HLA-A*32:01 successfully. Therefore, the epitopes were deemed to be suitable as components of a multi-epitope vaccine construct. Adjuvant RS09 was added to the construct to generate a stronger immune response, as confirmed by an immune system simulation. Finally, the structural stability of the predicted multi-epitope vaccine was assessed using molecular dynamics simulations. The results show a promising vaccine design that should be further synthesised and assessed for its efficacy in an experimental laboratory setting.


Assuntos
Biologia Computacional , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/química , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Humanos
3.
Onderstepoort J Vet Res ; 83(1): e1-e11, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27608502

RESUMO

Secreted proteins are reported to induce cell-mediated immunity characterised by the production of interferon-gamma (IFN)-γ. In this study three open reading frames (ORFs) (Erum8060, Erum7760, Erum5000) encoding secreted proteins were selected from the Ehrlichia ruminantium (Welgevonden) genome sequence using bioinformatics tools to determine whether they induce a cellular immune response in vitro with mononuclear cells from needle and tick infected animals. The whole recombinant protein of the three ORFs as well as four adjacent fragments of the Erum5000 protein (Erum5000A, Erum5000B, Erum5000C, Erum5000D) were successfully expressed in a bacterial expression system which was confirmed by immunoblots using anti-His antibodies and sheep sera. These recombinant proteins were assayed with immune sheep and cattle peripheral blood mononuclear cells (PBMCs), spleen and lymph node (LN) cells to determine whether they induce recall cellular immune responses in vitro. Significant proliferative responses and IFN-γ production were evident for all recombinant proteins, especially Erum5000A, in both ruminant species tested. Thus overlapping peptides spanning Erum5000A were synthesised and peptides that induce proliferation of memory CD4+ and CD8+ T cells and production of IFN-γ were identified. These results illustrate that a Th1 type immune response was elicited and these recombinant proteins and peptides may therefore be promising candidates for development of a heartwater vaccine.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Ehrlichia ruminantium/imunologia , Hidropericárdio/prevenção & controle , Animais , Bovinos , Ehrlichia ruminantium/genética , Imunização/veterinária , Interferon gama/biossíntese , Ativação Linfocitária , Fases de Leitura Aberta , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...